## Problem 63

The average density of the Sun is on the order $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. (a) Estimate the diameter of the Sun. (b) Given that the Sun subtends at an angle of about half a degree in the sky, estimate its distance from Earth.

## Solution

## Part (a)

According to Appendix D on page 894,

$$
\text { Mass of Sun : } \quad 1.99 \times 10^{30} \mathrm{~kg} \text {. }
$$

With the given density, the diameter of the Sun can be calculated.

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }} \rightarrow 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{1.99 \times 10^{30} \mathrm{~kg}}{\frac{4}{3} \pi R^{3}}
$$

Solve for $R$, the radius of the Sun.

$$
\begin{gathered}
\frac{4}{3} \pi R^{3}=\frac{1.99 \times 10^{30}}{10^{3}} \mathrm{~m}^{3} \\
R^{3}=\frac{3}{4 \pi} \frac{1.99 \times 10^{30}}{10^{3}} \mathrm{~m}^{3} \\
R=\sqrt[3]{\frac{3}{4 \pi}} \frac{1.99 \times 10^{30}}{10^{3}} \mathrm{~m} \approx 8 \times 10^{8} \mathrm{~m}
\end{gathered}
$$

The diameter of the Sun is double the radius.

$$
\text { Diameter of Sun : } \quad 2 R \approx 2 \times 10^{9} \mathrm{~m}
$$

## Part (b)

Draw the Earth, the Sun, and the subtended angle $\theta$. Let the distance from the Earth to the Sun be $r$, and let the diameter of the Sun be $d$.


The equation relating these variables is the formula for arclength.

$$
d=r \theta
$$

Solve for $r$, noting that $\theta$ has to be in radians.

$$
r=\frac{d}{\theta}=\frac{2 \times 10^{9} \mathrm{~m}}{0.5 \times \frac{\pi}{180}} \approx 2 \times 10^{11} \mathrm{~m}
$$

