Problem 63

The average density of the Sun is on the order 10^3 kg/m^3 . (a) Estimate the diameter of the Sun. (b) Given that the Sun subtends at an angle of about half a degree in the sky, estimate its distance from Earth.

Solution

Part (a)

According to Appendix D on page 894,

Mass of Sun: 1.99×10^{30} kg.

With the given density, the diameter of the Sun can be calculated.

Density =
$$\frac{\text{Mass}}{\text{Volume}}$$
 \rightarrow $10^3 \frac{\text{kg}}{\text{m}^3} = \frac{1.99 \times 10^{30} \text{ kg}}{\frac{4}{3}\pi R^3}$

Solve for R, the radius of the Sun.

$$\frac{4}{3}\pi R^3 = \frac{1.99 \times 10^{30}}{10^3} \text{ m}^3$$

$$R^3 = \frac{3}{4\pi} \frac{1.99 \times 10^{30}}{10^3} \text{ m}^3$$

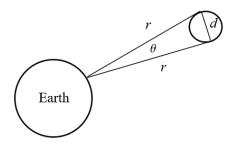
$$R = \sqrt[3]{\frac{3}{4\pi} \frac{1.99 \times 10^{30}}{10^3}} \; \mathrm{m} \approx 8 \times 10^8 \; \mathrm{m}$$

The diameter of the Sun is double the radius.

Diameter of Sun : $2R \approx 2 \times 10^9 \text{ m}$

Part (b)

Draw the Earth, the Sun, and the subtended angle θ . Let the distance from the Earth to the Sun be r, and let the diameter of the Sun be d.



The equation relating these variables is the formula for arclength.

$$d = r\theta$$

Solve for r, noting that θ has to be in radians.

$$r = \frac{d}{\theta} = \frac{2 \times 10^9 \text{ m}}{0.5 \times \frac{\pi}{180}} \approx 2 \times 10^{11} \text{ m}$$